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Abstract

We describe the design, implementation, and iterative optimization of a domain-
specific search engine for U.S. federal and private grant opportunities. The system
uses a four-stage hybrid retrieval pipeline—PostgreSQL full-text search, LLM
query expansion, pgvector embedding kNN, and cross-encoder reranking—to re-
trieve candidates from ~5,000 active grants ingested from 12 government and
philanthropic data sources, and simultaneously fuses results from five frontier
LLMs (Gemini, GPT-4.1, Claude, Grok, Perplexity) that search distinct web in-
dices to discover grants beyond the curated catalog. All candidates—regardless
of source—are scored using a unified 15-dimensional feature vector with learned
weights, eliminating the score normalization problem inherent in multi-source fu-
sion Shokonhi-and"Si [POTT]. The dominant signal (49% of weight budget) is
embedding cosine similarity from OpenAI’s text-embedding-3-small Nee
l[akanfan_ef all [Z027]. We detail a knowledge distillation pipeline Hinfon
ef _all [2OT9] that uses a frontier LLM (Claude Opus 4.6) to generate 1,034
relevance-labeled queries via two strategies (persona-derived and grant-centric
synthetic generation Ciief-all [Z024]), then applies stochastic hill climbing Kirk-
patrick et al] [T983] to optimize feature weights against a composite objective of
nDCG@ 10 MArvelin-and Kek#lamen [2Z0072], Precision@35, and poison rate. Over
three optimization phases, validation P@5 progressed from 50.0% to 60.3% while
poison rate dropped from ~42% to ~22%, with the system maintaining sub-
200ms scoring latency and ~$0.003/query marginal cost.

1 Introduction

1.1 Problem Statement

Grant seekers face a discovery problem: the U.S. federal government alone publishes ~67,000
active opportunities through Grants.gov, with thousands more from NSF, NIH, SAM.gov, SBIR.gov,
state portals, and private foundations. A nonprofit seeking environmental justice funding must sift
through programs spanning defense, agriculture, healthcare, and education to find the handful that
match their mission, eligibility, and geographic focus.

Existing grant search tools fall into two categories: (1) keyword-based portals (Grants.gov,
SAM.gov) that return hundreds of results with no relevance ranking, and (2) commercial platforms
(Instrumentl, GrantWatch) that charge subscription fees and still rely heavily on manual curation.
Neither provides personalized, scored results that account for organization type, geographic eligi-
bility, and topical relevance simultaneously. Recent advances in dense retrieval Karpukhin et all
[2020], learned sparse representations Formal ef all [P021], and LLM-based reranking Sun_ef all
[2023] suggest that modern IR techniques can address these shortcomings.
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1.2 Design Goals

1. Sub-second latency—Scoring via precomputed features and dot-product; LLM calls
(query expansion, cross-encoder) run in parallel with retrieval, adding ~100-200ms.

2. Interpretable scores—Each grant receives a 1-99 fit score with human-readable match
reasons derived from the feature vector.

3. Low poison rate—Results clearly irrelevant to a query should rarely appear in the top 10.

4. Continuous improvement—A reproducible evaluation framework with 1,034 labeled
queries, automated baseline comparison, and cached-feature distillation enabling rapid
weight iteration.

1.3 System Overview

The system operates as a four-stage hybrid retrieval pipeline:

Stage 1: RECALL (parallel retrieval)
|-- PostgreSQL FTS (OR strategy) + ilike fallback
|-- LLM Query Expansion (gpt-4.1-nano, ~100ms)
| -> Second FTS pass with expanded terms
| -- Embedding kNN (pgvector, top 50)
| -> text-embedding-3-small cosine similarity
--> Merged candidate pool (500-700 candidates)

Stage 2: SCORE (15-feature extraction + weighted sum)
Per-candidate feature extraction -> dot product
-> Scored, filtered, sorted candidates (Pass 1)

Stage 3: RERANK (cross-encoder on top 50)

OpenAI gpt-4.1-nano (or Cohere Rerank)

-> crossEncoderScore injected as feature #15

-> Full re-scoring with all 15 features (Pass 2)
Stage 4: FILTER + PRESENT

Hard filters, soft filters, deduplication
-> Top 40 results with fit scores and reasons

2 Data Ingestion Pipeline

2.1 Data Sources

The system ingests grant opportunities from 12 active data providers spanning official government
APIs, RSS feeds, state portals, and Al-discovered foundation grants (Table ).

Table 1: Active data sources for grant ingestion.

Provider Type Cadence Volume
Grants.gov (XML) Official API Daily ~67,000
SAM.gov Official portal ~ 12h ~2,000-5,000
NSF Funding RSS feed 12h ~500-1,000
NSF Due Dates RSS feed 12h ~100-300
California Grants State portal 12h ~200-500
Challenge.gov REST API 24h ~100-500
SBIR.gov REST API 12h ~50-200
Texas eGrants REST API 24h ~100-300

Foundation RFP Agent  Al-discovered On-demand ~689

2.2 Normalization Pipeline

Each provider has a dedicated fetcher that normalizes records to a common schema before upsert-
ing to the public_grants table. The normalization pipeline applies: (1) HTML entity decoding



(double-encoded entities), (2) deadline parsing to ISO 8601, (3) amount validation ($100 minimum
for federal programs), (4) stable URL slug generation for deduplication, (5) quality scoring (com-
posite 0—100 based on field completeness), (6) staleness bucketing, and (7) link health checking via
HTTP HEAD with 4s timeout.

2.3 LLM-Based Grant Tagging

At ingestion time, each grant is asynchronously tagged using gpt-4. 1-nano (~$0.001/grant). The
tagger classifies against a fixed taxonomy of ~180 topics across 12 categories. Tags are stored in a
JSONB column indexed with a GIN index. As of February 2026, 4,596 of 4,597 active grants are
tagged (99.98% coverage).

3 Feature-Based Scoring Architecture

3.1 Feature Vector

Each grant-query pair produces a 15-dimensional feature vector f € R'5. Features are grouped into
five categories.

Text Relevance Features (4 dimensions). phraseMatchScore € [0, 1]: Compound phrase hits
across grant fields using a dictionary of 111 known domain phrases. For each phrase found in the
query, field-weighted matches are computed:

Zi Zj wj - 1[]91 c ﬁeldﬂ) M

phraseMatchScore = min| 1,
|phrases|

where w; € {0.40,0.22,0.25, 0.13} for name, summary, eligibility, and funder fields respectively.

tokenMatchScore € [0, 1]: Individual token hits with the same field-weighted approach. Tokens
shorter than 4 characters use word-boundary matching to prevent false positives.

tokenCoverage € [0, 1]: Fraction of all query terms with at least one match in any grant field.

topicOverlap € [0,1]: Jaccard similarity between query topics (inferred via keyword matching
against the 180-topic taxonomy) and grant topics (from pre-computed grant_tags):

‘ Qtopics N Gtopics ‘

topicOverlap =
‘Qlopics ) Glopics‘

@

Semantic Features (2 dimensions). embeddingSimilarity € [0, 1]: Cosine similarity between
query and grant embeddings from OpenAl text-embedding-3-small Neelakanfan ef all [2027]
(1536 dimensions). Grant embeddings are pre-computed and stored with a pgvector IVFFlat in-
dex lohnson'efall [2Z0TY]. At query time, kNN retrieval returns the top 50 most similar grants:

embeddingSimilarity = cos(eq, e,) = e;eg 3)

since OpenAl embeddings are Lo-normalized. This feature became the dominant ranking signal
after Phase B distillation (49% of weight budget).

crossEncoderScore € [0, 1]: Pointwise relevance from a cross-encoder Nogueira and Chg [2019]
applied to the top 50 candidates after initial scoring. Two backends are supported: Cohere Rerank
(rerank-v3.5) and an OpenAl gpt-4. 1-nano fallback Sun_ef-all [2073].

Metadata Features (5 dimensions). orgTypeMatch € [—0.5,1.0], stateMatch € [0,1],
sourceQuality € {0,0.5,1.0}, hasRfpUrl € {0,1}, hasAmount € {0,1}. Organization type
matching is gated by text relevance: grants matching org type but with zero focus hits are capped at
0.15, preventing metadata-only inflation.

Freshness Features (3 dimensions). deadlineScore € {—1,0,1}, freshnessScore €
{0,0.5,1.0}, qualityScore € [0, 1].

Penalty Features (1 dimension). nonUsScore € {—1,0}: Binary penalty for non-US grants,
triggered by detection of Canadian province names, Australian/UK/EU keywords.



3.2 Weight Vector and Score Combination

The final fit score is computed as a weighted linear combination with a two-tier mapping:
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If siext < 0.05 (no text/semantic signal):
score = clamp(1 + max (0, Sy x 80), 1, 99) 6)

Otherwise:

score = clamp(10 + sy X 120, 1, 99) @)

The current production weight vector (Table ) was learned via Phase B distillation.

Table 2: Production weight vector after Phase B distillation (1,034 queries).

Feature Weight Category
hraseMatchScore 0.034

EokenMatchScore 0.021 Text: 13.5%
tokenCoverage 0.080

topicOverlap 0.079
embeddingSimilarity  0.489  Semantic: 61.4%
crossEncoderScore 0.046

orgTypeMatch 0.010

stateMatch 0.034

sourceQuality 0.001 Metadata: 12.8%
hasRfpUrl 0.069

hasAmount 0.014

deadlineScore 0.001

freshnessScore 0.014 Freshness: 1.8%
qualityScore 0.003

nonUsScore 0.105 Penalty: 10.5%

3.3 Stop Word Architecture

A critical engineering detail is the separation of stop words into two tiers. Retrieval stop words (24
words): true function words removed before building the FTS query (“the”, “and”, “for”, “grant”,
“funding”, etc.). Scoring stop words (31 words): domain-common words retained for retrieval
recall but filtered from scoring feature extraction (“research”, “community”, “health”, etc.). This
separation ensures that long queries retain domain terms for database retrieval while excluding them
from the scoring denominator.

4 Retrieval and Filtering

4.1 Multi-Stage Candidate Retrieval

Retrieval runs three strategies in parallel, merging results into a unified candidate pool.

Full-Text Search (PostgreSQL). Query tokens are extracted, stop-word-filtered, and joined with
OR for maximum recall. If FTS returns empty, an ilike fallback queries each token against name,
funder, summary, and eligibility fields.

LLM Query Expansion. A lightweight gpt-4. 1-nano call (~$0.0001/query, ~100ms, 3s time-
out) expands the user’s query with synonyms and related program names. Example: “food insecurity
rural communities” — “hunger, nutrition assistance, SNAP, food bank, USDA, food desert. ..” This
approach is related to HyDE Gao“ef-all [2023] and Query2Doc Wang et al] [P073], but uses di-
rect term expansion rather than hypothetical document generation. Expanded tokens are used for a
second FTS pass. On failure, the system degrades gracefully to original FTS results.



Embedding kNN (pgvector). The query is embedded via text-embedding-3-small Neelakan3
fan"ef all [P027] and matched against pre-computed grant embeddings using pgvector’s IVFFlat
index (top 50). This contributes 10-30 additional candidates not found by FTS, capturing semantic
matches that lexical search misses Karpukhin et all [Z021].

Merge Strategy. All three stages produce candidate pools merged by slug. The final pool is typi-
cally 500-700 candidates.

4.2 Cross-Encoder Reranking (Pass 2)

After the initial scoring pass (Pass 1, using 14 features), the top 50 candidates are reranked: (1) Build
a document string per candidate (name, funder, summary, eligibility; up to 4096 chars), (2) score
each document against the query using the best available backend, (3) inject crossEncoderScore,
(4) re-score all candidates with the complete 15-feature vector (Pass 2).

4.3 Hard and Soft Filters

Hard filters (pre-scoring): removal of entries with no name/funder, terminated programs, grants
expired > 30 days, 28 entitlement program patterns (Social Security, SNAP, Medicaid, etc.), and
SBIR/STTR statutory ineligibility by org type.

Soft filters (post-scoring): state filter (wrong-state grants below score 55 removed), score floor at
20%.

S Multi-Provider Fusion: Unified Scoring Across Heterogeneous Sources

The retrieval pipeline described in Section 4 operates over a curated database of ~5,000 indexed
grants. However, the grant landscape extends far beyond any single catalog: new programs are an-
nounced on agency websites, state portals, and foundation pages daily, with no centralized registry.
To maximize recall, the system simultaneously queries five frontier LLMs—each backed by a dis-
tinct web search index—and fuses their results with the database retrieval pipeline under a single,
calibrated scoring function. This section describes the federated search architecture and the score
normalization problem it solves.

5.1 The Score Normalization Problem

In a multi-source retrieval system, each source produces relevance estimates on its own internal
scale Shokouhi_and_Si [2ZOT1]. Classical federated search Callan [2000] addresses this via score
normalization techniques such as CombMNZ Fox and Shawl [T994] or Reciprocal Rank Fusion Cor?
mack ef all [P2O09]. Our setting introduces a more acute variant: the “sources” are generative LLMs
with web search capabilities Nakano ef all [P021], each returning self-reported relevance scores
(termed fit_score) alongside structured grant metadata.

These LLM-reported scores exhibit three pathologies that make direct comparison impossible:

1. Scale divergence. One provider consistently assigns scores in [80, 95] while another uses
the full [40, 95] range. There is no shared calibration target.

2. Intra-provider inconsistency. The same provider assigns different score distributions de-
pending on query specificity—broad queries yield uniformly high scores (anchoring bias),
while narrow queries produce wider variance.

3. Cross-index incomparability. Each provider searches a different web index (Google
Search, Perplexity’s crawler, OpenAl’s search provider, Anthropic’s search provider, xAI’s
search provider). A score of 85 from a provider that found the grant via a government RSS
feed is not commensurable with a score of 85 from one that discovered it on a foundation’s
blog post.

Naively merging results by their self-reported scores produces rankings dominated by whichever
provider inflates scores most aggressively—a degenerate outcome equivalent to letting the most
optimistic judge determine the final ranking.



5.2 Architecture: Parallel Provider Orchestration

The authenticated search endpoint fires five LLM providers in parallel, each receiving an identi-
cal structured prompt containing the user’s focus area, organization type, state, and a dynamically
selected set of relevant federal agencies:

Parallel Provider Dispatch (5 providers, ~8-70s):
|-- Gemini 3 Flash (Google Search grounding)
| -- Perplexity Sonar Pro (proprietary web crawler)
|-- OpenAI GPT-4.1 (web_search tool)
| -- Claude Haiku 4.5 (web_search tool)
|-- Grok 4.1 Fast (web_search tool)
--> Raw candidate pools (10-15 grants each)

Each provider returns structured JSON conforming to a shared opportunity schema. Results stream
to the client via NDJSON (newline-delimited JSON) over a ReadableStream as each provider
completes—the fastest provider (typically Perplexity at ~8s) delivers results while slower providers
(Grok at ~70s) are still searching. A 75-second per-provider timeout and 100-second global timeout
bound worst-case latency.

Critically, each provider searches a different underlying web index. Google Search grounding ac-
cesses Google’s crawler; Perplexity maintains its own independent index; OpenAl, Anthropic, and
xAl each use proprietary or licensed search backends. This index diversity means the five providers
collectively search a far larger surface of the web than any single provider, frequently discovering
grants that exist only on specific agency websites, state portals, or foundation pages not yet ingested
into the curated database.

5.3 Unified Scoring via Feature Projection

Our solution discards all LLM-reported scores and projects every candidate—whether from the cu-
rated database or from any LLM provider—through the identical 15-feature extraction pipeline (Sec-
tion 3):

15
sunifiea (¢, 9) = »_ wi - fi(¢:9) Vg € Gap UG, U+ U Gimg ®
=1

This is not a post-hoc normalization (e.g., min-max rescaling per source or z-score standardization);
itis a complete re-evaluation of each candidate against the learned feature weights. The scorer treats
LLM-discovered grants identically to database grants: it extracts phrase matches, token coverage,
topic overlap, organization type compatibility, geographic relevance, and all other features from the
raw grant metadata. Embedding similarity and cross-encoder scores are computed only for database
candidates (which have pre-computed embeddings); LLM-discovered grants receive zero for these
features but can still achieve high scores through strong lexical and metadata alignment.

This design has a key theoretical property: the scoring function is source-agnostic. A grant’s score
depends solely on its textual content and metadata relative to the query—not on which provider
discovered it, which search index it came from, or what confidence the originating LLM assigned.
This eliminates the score normalization problem entirely rather than attempting to calibrate across
incommensurable scales.

5.4 Incremental Deduplication with URL Resolution

Multi-source fusion introduces a deduplication challenge: the same grant frequently appears from
multiple providers under slightly different names, varying summary lengths, or inconsistent meta-
data. We employ a two-layer incremental deduplication strategy that operates as each provider
returns, rather than as a batch post-processing step:

Layer 1: Exact key matching. Each grant is assigned a canonical key k£ =
lower(name) | lower(funder). A shared Set<string> tracks all keys across the database results
and all prior provider batches. Collisions trigger a merge: the duplicate’s provider attribution is ap-
pended to the existing grant’s _providers [] array, preserving multi-source provenance metadata.



Layer 2: URL-based entity resolution. Grants with distinct names but identical RFP URLS rep-
resent the same underlying opportunity (e.g., “NOAA Marine Debris Removal” vs. “FY25 Marine
Debris Program™). A shared URL index maps normalized URLSs to their owning grant’s canonical
key. When a background URL resolution service (Serper Google Search API) discovers that two
grants share an RFP URL, the lower-scoring duplicate is merged into the higher-scoring entry.

This incremental architecture avoids the quadratic cost of all-pairs similarity computation and en-
ables streaming: the client receives deduplicated results as each provider finishes, rather than waiting
for all providers before deduplication begins.

5.5 Terminal Reranking

After all providers complete and deduplication converges, the top 40 candidates (drawn from both
database and LLM sources) undergo a final listwise reranking pass via GPT-4.1-mini Snun_ef all
[2023]. The reranker sees each candidate’s name, funder, summary, and eligibility text and produces
a permutation of the candidate indices ordered by holistic relevance to the query. This terminal
reranking serves as the final authority on ordering, capturing cross-candidate comparative judgments
that the pointwise feature scorer cannot express.

The reranker fires unconditionally on every search with >5 candidates (~$0.001-$0.005/call), re-
placing an earlier conditional strategy that only fired when score variance was low. Empirically,
unconditional reranking improved result quality even for well-separated score distributions, because
the reranker captures semantic nuances (“is this grant actually about the user’s topic, or merely
keyword-adjacent?”) that the feature-based scorer cannot.

5.6 Provenance Tracking and Analysis

Every grant in the final result set carries a _providers [] array recording which sources contributed
it. This enables post-hoc analysis of provider utility: which providers consistently discover grants
that score highly under the unified scoring function, and which contribute mostly low-scoring or du-
plicate results. Structured events logged to the app_events table record per-provider result counts,
duplication rates (both name-based and URL-based), and latency, enabling continuous monitoring
of the federated pipeline’s health.

We deliberately chose not to apply a provenance boost (e.g., +5 points for multi-provider grants)
despite the intuition that cross-source consensus signals relevance Fox_and_Shaw [[994], Aslani
and Montagug [200T]. The terminal reranker already observes all evidence and can implicitly fac-
tor in multi-provider consensus, and a provenance boost risks artificially inflating mediocre grants
that happen to appear in multiple indices while suppressing niche grants discoverable by only one
specialized provider.

6 Knowledge Distillation Pipeline

6.1 Motivation

The 15-dimensional weight vector was initially set by domain intuition, then iteratively optimized
through three phases of knowledge distillation Hinfon ef-all [Z0T5] that transfer the relevance judg-
ments of frontier LLMs into the lightweight linear scorer.

6.2 Label Generation

Phase 7: Two-Tier Labeling (Failed Approach). The initial approach used GPT-5-mini for both
query generation and relevance labeling (251 queries), with 24 hand-crafted gold queries evaluated
separately. This created a calibration gap: GPT-5-mini rates more conservatively (only 23% of
candidates rated 2-3 vs. the gold standard’s threshold), causing the optimizer to learn weights that
improved nDCG +7.8% but regressed P@5 by —11.8%. Key insight: Using different LLMs for
training labels vs. evaluation labels creates divergent optimization targets.

Phase 8: Unified Labeling (Production Approach). All 224 queries were re-labeled by a single
judge (Claude Opus 4.6) with consistent persona-grounded methodology. Queries span 13 taxonomy



categories, 6+ organization types, and 43 U.S. states. Each candidate is rated on a 4-point scale:
3 (must-have), 2 (good), 1 (acceptable), O (irrelevant). The judge additionally identifies “poison”
grants that should never appear.

Label statistics: 224 files, 5,530 ratings; distribution: 0=57.9%, 1=20.2%, 2=12.9%, 3=9.1%; 1,967
poison indices.

Phase B: Grant-Centric Synthetic Expansion. Phase 8’s 224 queries provided only ~15 data-
points per weight parameter—insufficient for the optimizer to discover the importance of embedding
and cross-encoder features. Phase B expanded to 1,034 queries via grant-centric generation: (1) 406
grants sampled from the database, stratified by category, (2) GPT-5-mini generates 2 queries per
grant (2-8 words, different org types), (3) deduplicated via bigram Jaccard similarity (> 0.7 thresh-
old), producing 812 new queries, (4) all labeled by GPT-5-mini using the same 4-point scale. This
synthetic data expansion follows best practices outlined by Linef all [2024].

6.3 Train/Validation Split

The 1,034 queries are split 85%/15% using a deterministic MD35 hash of the query ID, yielding ~889
training and ~145 validation queries (~59 datapoints per parameter).

6.4 Hill-Climbing Optimizer

The optimizer uses stochastic hill climbing with simulated annealing Kirkpatrick et all [TY83]. Per-
turbation magnitude decreases linearly from 0.4 to 0.1:

mag (i) = 0.4 X (1 —4/Inux) + 0.1 )
Structural constraints. (1) Text + semantic features > 50% of total weight, (2) no single weight

> 0.50, (3) nonUsScore capped at 0.25 before normalization.

Composite objective.
J(w) =0.30 - nDCG@10 + 0.60 - P@5 4 0.10 - (1 — poisonRate) (10)

Acceptance criteria. A candidate is accepted iff: (1) J(w') > J(w*), (2) P@5(w’) > 0.80 x
P@5p5eline, and (3) P@5(w') > 0.30.

6.5 Cached-Feature Distillation

The original distillation approach ran the full search pipeline per optimizer iteration per query. With
889 queries x 200 iterations = 177,800 evaluations, this was infeasible.

Key insight: Retrieval is constant across iterations—only weights change. Feature extraction is
deterministic given the same grant row and search context. Only the dot product depends on weights.

Solution: Pre-compute feature vectors once per query-candidate pair (~64 minutes for 1,034
queries, ~215K candidates), then optimize weights purely in-memory (78 seconds for 500 itera-
tions). This achieves a > 50,000 speedup.

6.6 Distillation Results

Table 3: Phase B distillation results (1,034 queries, 15 features, cached-feature approach).

nDCG@10 P@5 Poison
Dataset Phase A Phase B Phase A Phase B Phase A Phase B
Train (889) 65.3% 72.6% 51.8% 60.1% 42.1% 22.4%

Validation (145)  63.9% 70.4% 52.3% 60.3% 42.8% 21.6%

Key findings: (1) embeddingSimilarity surged from 0.047 to 0.489 (49% of weight budget),
(2) nonUsScore dropped from 0.264 to 0.105 as embeddings provided better relevance discrimi-
nation, (3) lexical features dropped from ~35% to ~5.5%, (4) validation metrics tracked training
closely, confirming no overfitting.



7 Evaluation Framework

7.1 Metrics

Three metrics are computed per query and averaged:

nDCG @10 [Jarvelin and KeKalainen [2Z002].

DCG@Fk Fooomi g

DCG@k = - DCG@k=S ——
n IDCG@F’ ; Togy (i + 1)

(1)

where IDCG is computed from actual results’ matched relevances sorted optimally.

P@5. P@5 = |[{r € top-5 : rel(r) > 2}|/ min(5,|R|). Only relevance levels 2 and 3 count as
relevant.

Poison Rate. Fraction of queries with any clearly irrelevant result in the top 10.

7.2 Gold Standard

25 hand-labeled test queries derived from 18 QA personas (real organizational profiles) and 7 edge
cases (very broad, very narrow, acronym-heavy, no-state, tribal, SBIR eligibility).

8 Production Bug Fixes and Lessons

Long Query Failure. Queries with 10+ words returned zero results due to cascading failures:
overly aggressive stop words stripped all meaningful tokens, the token limit of 6 truncated survivors,
and the score gate at 28% filtered remaining results. Fix: Three-tier stop word system, token limits
raised to 15. Lesson: Stop words for scoring precision can catastrophically break retrieval recall—
the two concerns must be separated.

SBIR Statutory Eligibility. SBIR/STTR grants appeared for ineligible org types because the soft
penalty (orgTypeMatch weight 0.011) only cost ~3% score. Fix: Hard filter before scoring. Lesson:
Statutory eligibility rules should be hard filters, not soft scoring signals.

State Filter Coupling. A tribal college in North Dakota went from 34 results to 1 after a weight
update because the nonUsScore penalty (0.408) dropped grants below the state filter threshold
calibrated for pre-update weights. Lesson: Filter thresholds are coupled to the weight vector and
must be re-calibrated when weights change.

nDCG Metric Inflation. Reported nDCG of 93.3% masked true performance of 72.3% because
IDCG was computed from the expected list rather than actual results. Lesson: Always validate
metric implementations against known-good examples.

9 Al Model Inventory and Costs

Table 4: Development and operational costs.

Phase One-Time Per-Query
Phases 0—P8 (scoring + eval) ~$3 $0
Phase A (embed + expand + rerank) ~$0.01 ~$0.003
Phase B (synthetic data + distill) ~$10 $0
Total ~$13 ~$0.003

The per-query cost is dominated by cross-encoder reranking (~$0.001). At 1,000 queries/day, this
is ~$90/month.



The retrieval pipeline uses four model calls per query: query expansion (gpt—4.1-nano, ~$0.0001),
query embedding (text-embedding-3-small, ~$0.000002), pgvector kNN (database, $0), and
cross-encoder reranking (gpt-4.1-nano, ~$0.001).

10 System Evolution

Table 5: Metrics evolution across development phases. Early phases use the gold standard (24
queries); search upgrade phases use the validation set (145 queries).

Phase nDCG P@5 Poison Key Change
Gold standard evaluation (24 hand-labeled queries):
Pre-P1 ~45% ~35% ~20%  No eval framework

P1-P5 (inflated) 93.3%  52.5% 0.0% nDCG bug masked perf.
P6: Corrected 72.3%  65.8% 4.2% True metrics

P6: + Reranker 722%  65.0% 0.0% Poison eliminated

P7: Distillation 79.6%  54.0% 0.0%  Calibration gap

P8: Unified 85.8%  47.9% 0.0% nonUsScore discovery
Search upgrade phases (145 LLM-labeled queries):

Phase 0 ~61% 50.0% ~42%  Stop words, 224 queries
Phase A ~64% 533% ~42%  +embed, +expand, +rerank
Phase B 70.4% 60.3% ~22% 1,034 queries, cached distill

11 Limitations and Future Work

11.1 Current Limitations

1. P@5 at 60%, not 80%+. The linear model cannot capture feature interactions. A non-
linear model is needed for the next leap.

2. Poison rate at ~22%. Some irrelevant grants score high on embedding similarity. A
purpose-built cross-encoder would help.

3. No query-type routing. All queries use the same weight vector despite fundamentally
different retrieval characteristics.

4. LLM labels are a proxy. Real user click signals would provide ground truth for the actual
discovery task.

5. General-purpose embeddings. text-embedding-3-small Neelakanfan ef all [2027]
was trained on web text, not grant-specific language. Domain-specific fine-tuning Reimers
and Gurevych [20T9] could improve the vocabulary bridge.

11.2 Phase C: Learning-to-Rank
When GA4 click data provides 1,000+ queries with engagement signals, LambdaMART Burges

[Z0T0] replaces the linear scorer with a gradient-boosted decision tree Chen and Guesfrin [20T6],
Ke efall [Z0T7] trained via the LambdaRank objective:

T
Linear: s=w'f — GBDT: s= th(f) (12)
t=1

This captures feature interactions (e.g., “high embedding AND matching org type”) that the linear
model averages away. Expected impact: +5-10pp P@5.

11.3 Scaling: ColBERT and SPLADE

At 50K+ grants, the retrieval architecture evolves:
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ColBERT Santhanam ef all [2022], Xiao ef all [2024]. ColBERT stores per-token embeddings
and computes a MaxSim operator:

s(q,d) = Z m]ax cos(q;, d;) (13)
This enables fine-grained matching of technical terms averaged away by single-vector embeddings.

SPLADE Formalef-all [2021]. SPLADE learns sparse, high-dimensional representations that
naturally bridge vocabulary gaps, potentially replacing the current LLM query expansion step with
a faster learned expansion.

Stage 1: RECALL
| -— SPLADE sparse retrieval (replaces FTS + expansion)
|-- ColBERT late interaction (replaces kNN)
|-- BM25 fallback (exact name/acronym matches)

Stage 2: CROSS-ENCODER RERANK (top 50-100)
Fine-tuned ModernBERT cross-encoder [Warner et al., 2024]

Stage 3: LambdaMART SCORING (15+ features)
GBDT with feature interactions

Projected marginal cost at 50K grants: ~$0/query (all self-hosted inference vs. current
~$0.003/query from API calls).

12 Related Work

Dense Retrieval and Embeddings. Dense passage retrieval Karpukhin et all [2020]] demonstrated
that learned dense representations can outperform BM25 Robertson and Zaragozd [Z009] for open-
domain QA. Our embedding retrieval stage uses OpenAl’s contrastive pre-trained embeddings Nee-
[akanfan_ef all [Z027], which provide general-purpose semantic matching without domain-specific
fine-tuning. Sentence-BERT Reimers and Gurevych [20TY] established the bi-encoder paradigm we
adopt, where queries and documents are independently embedded for efficient kNN retrieval. BGE
M3-Embedding Chen"ef-all [2024] showed that multi-granularity embeddings can serve multiple
retrieval functions simultaneously.

Learned Sparse Retrieval. SPLADE Formalefall [2021] learns sparse, high-dimensional repre-
sentations that bridge vocabulary gaps through learned term expansion—a capability we currently
achieve via LLM query expansion but plan to replace with SPLADE at scale (Section 10.3).

Late Interaction Models. ColBERTvV2 Santhanam ef all [Z027] introduced efficient late interac-
tion via token-level MaxSim, enabling fine-grained matching that single-vector embeddings miss.
Jina-ColBERT-v2 Xiao et all [2074] extended this to multilingual settings with Matryoshka dimen-
sion reduction for storage efficiency. These models represent our planned retrieval upgrade path at
50K+ grants.

Cross-Encoder Reranking. BERT-based cross-encoders Nogueira and Chg [Z0T9] remain the
gold standard for pointwise relevance scoring. Recent work has explored using LLMs as
rerankers Sun_ef-all [Z073], Pradeep et all [Z(023], with Rankl Weller_ef-all [Z075] demonstrating
that test-time compute can match larger rerankers. Our system uses an LL.M-based cross-encoder
(gpt-4.1-nano) as a fallback when purpose-built rerankers are unavailable. ModernBERT Warnex
ef_all [2024] provides a strong base for future fine-tuned cross-encoders with 8K context and im-
proved efficiency.
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Query Expansion. HyDE Gaoefall [2073] generates hypothetical documents to bridge the query-
document vocabulary gap. Query2Doc Wang et all [2073] and LLM-based expansion Jagerman
ef_all [20723] use language models to generate expansion terms. Our approach is closest to direct
term expansion, using a lightweight LLM call to produce synonyms and related program names.

Learning to Rank. LambdaMART Burgeg [P0T0], implemented in XGBoost Chen"and Guesfrin
[20T6] and LightGBM Ke“ef-all [20T7], is the standard gradient-boosted approach for learning-to-
rank. Our current linear scorer is a deliberate simplification that we plan to replace with Lamb-
daMART once click data provides sufficient training signal. GritLM Muennighoff et all [2024]
demonstrated unified embedding and generation models, suggesting a potential architecture simpli-
fication.

Federated Search and Result Fusion. Distributed information retrieval Callad [2000], Shokouhi
and_Si [20T1] addresses the problem of querying multiple heterogeneous collections and merging
results into a single ranked list. Classical fusion methods include CombMNZ Fox_and Shaw [[994],
Condorcet-based voting [Aslam and Montagug [P001], and Reciprocal Rank Fusion Cormack ef al
[2009]. Our multi-provider architecture faces an analogous challenge, but our “sources” are gen-
erative LLMs with web search tools Nakano ef all [Z0021]] rather than traditional document indexes.
Rather than attempting cross-source score normalization, we eliminate the problem entirely by re-
scoring all candidates through a single learned feature function—a strategy more akin to centralized
re-evaluation than distributed fusion. BEIR [Thakur_ef all [2021] demonstrated that retrieval mod-
els exhibit significant performance variance across heterogeneous domains, motivating our domain-
specific feature design.

Knowledge Distillation and Synthetic Data. Hinfon efall [2UT9)] established the framework for
transferring knowledge from large models to smaller ones. Linef-all [2074] provided best prac-
tices for LLM-generated training data, which informed our two-strategy query generation pipeline.
Our cached-feature distillation approach is related to offline feature extraction in deployed ranking
systems, but applied to weight optimization rather than model training.

13 Conclusion

We presented a domain-specific grant search engine that combines four-stage hybrid retrieval with
a 15-feature linear scorer optimized via knowledge distillation, deployed as the unified scoring
backbone for a federated search system spanning five frontier LLM providers and a curated grant
database. The key technical contributions are: (1) a source-agnostic feature projection that elim-
inates the score normalization problem in multi-provider fusion by re-evaluating all candidates—
whether from a curated database or discovered by any of five LLMs searching distinct web indices—
through an identical learned scoring function, (2) a cached-feature distillation approach that achieves
> 50,000 x speedup over naive per-iteration evaluation, (3) a two-strategy query generation pipeline
(persona-derived + grant-centric) that expanded training data from 224 to 1,034 labeled queries, and
(4) the empirical finding that embedding cosine similarity dominates lexical features for domain-
specific search with vocabulary mismatch. Over three optimization phases, validation P@5 im-
proved from 50.0% to 60.3% while poison rate halved from ~42% to ~22%, at a marginal cost of
~$0.003/query.
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